ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ТЕХНОФРОСТ»

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММА ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ «ХОЛОДИЛЬНАЯ ТЕХНИКА И СИСТЕМЫ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА»

ОГЛАВЛЕНИЕ

1.	Общая характеристика ДПП	4
	1.1. Нормативно-правовая основа ДПП	4
	1.2. Цель и задачи ДПП	4
	1.3. Категория слушателей ДПП	5
	1.4. Перечень профессиональных компетенций, качественное изменение которых	
	осуществляется в результате обучения	5
	1.5. Характеристика квалификации и связанных с ней видов профессиональной деятельност	и7
	1.6. Планируемые результаты обучения по ДПП	8
	1.7. Форма обучения	8
2.	СОДЕРЖАНИЕ ДПП	9
	2.1. Общая трудоёмкость ДПП, аудиторная и самостоятельная работа	9
	2.2. Учебный план	9
	2.3. Календарный учебный график	10
3.	РАБОЧАЯ ПРОГРАММА	11
4.	ОРАГНИЗАЦОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ДПП	20
	4.1. Отбор педагогов, участвующих в обучении	20
	4.2. Материально-техническое оснащение ДПП	21
	4.3. Учебно-методическое обеспечение ДПП	21
	4.3.1. Основная литература	21
	4.3.2. Дополнительная литература	22
5.	ФОРМЫ АТТЕСТАЦИИ	24
	5.1. Оценочные материалы промежуточной аттестации	
	5.1.1. Комплект оценочных средств по промежуточной аттестации	24
	5.2. Оценочные материалы итоговой аттестации	
	5.2.1. Комплект оценочных средств по итоговой аттестации	
	Составители программы:	

Обозначения и сокращения

В данном документе используются следующие обозначения и сокращения:

ДПП — дополнительная профессиональная программа;

ПК — профессиональные компетенции;

ПС — профессиональный стандарт;

СКВ — системы кондиционирования воздуха;

ХМ — холодильная машина;

ХУ — холодильная установка.

1. Общая характеристика ДПП

1.1. Нормативно-правовая основа ДПП

Нормативно-правовую основу разработки ДПП составляют:

- Федерального закона от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации».
- Приказа Минобрнауки России от 01.07.2013 года № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».
- Письмо Минобрнауки России от 22 апреля 2015 года № ВК-1032/06 «О направлении методических рекомендаций» (вместе с «Методическими рекомендациямиразъяснениями по разработке дополнительных профессиональных программ на основе профессиональных стандартов»).
- 269н Приказ Минтруда России OT 22.04.2021 N «Об утверждении стандарта профессионального «Специалист ПО проектированию систем холодоснабжения» (Зарегистрировано в Минюсте России 24.05.2021 N 63603).

1.2. Цель и задачи ДПП

Цель ДПП — подготовить высококвалифицированных и конкурентоспособных специалистов в области холодильной техники и систем кондиционирования воздуха; сформировать у слушателей компетенции в области расчёта, подбора оборудования, эксплуатации и ремонта систем холодоснабжения и кондиционирования воздуха.

Задачи изучения дополнительной профессиональной программы повышения квалификации «Холодильная техника и системы кондиционирования воздуха»:

- изучение принципов работы компрессионных холодильных машин;
- изучение методик расчёта тепловых, гидравлических и тепловлажностных процессов в элементах XУ и СКВ;
- изучение основных типов и конструкций ХУ и СКВ;
- изучение принципов диагностики, поиска неисправностей и их устранения для XУ и СКВ.

Реализация ДПП повышения квалификации направлена на совершенствование и (или) получение новой компетенции, необходимой для профессиональной деятельности, и (или) повышение профессионального уровня в рамках имеющейся квалификации.

1.3. Категория слушателей ДПП

К освоению ДПП допускаются: лица, имеющие среднее профессиональное и (или) высшее образование; лица, получающие среднее профессиональное и (или) высшее образование.

1.4. Перечень профессиональных компетенций, качественное изменение которых осуществляется в результате обучения

Профессиональные компетенции, приобретаемые обучающимися в рамках освоения ДПП, основываются на Приказе Минтруда России от 22.04.2021 N 269н «Об утверждении профессионального стандарта «Специалист по проектированию систем холодоснабжения» (Зарегистрировано в Минюсте России 24.05.2021 N 63603).

Обучающийся по завершению ДПП должен обладать следующими профессиональными компетенциями:

- Готовность участвовать в работах по технико-экономическим обоснованиям проектируемых образцов низкотемпературной техники, по составлению отдельных видов технической документации машин и аппаратов, их элементов и сборочных единиц (ПК-11);
- Готовность участвовать в диагностике неисправностей низкотемпературных систем различного назначения и их устранении с использованием различных приспособлений и инструментов (ПК-17);
- Готовность выполнять регламентные и профилактические мероприятия, плановые и внеплановые ремонтные работы низкотемпературных объектов с целью увеличения срока их службы и надёжности (ПК-18).

Соответствие видов деятельности, компетенций и их составляющих приведены в таблице 1.

Таблица 1. Виды деятельности и профессиональные компетенции

В	ид деятельности: Прое	ктно-конструкторская деятел	ьность
Профессиональные компетенции	Практический опыт	Умения	Знания
ПК-11, готовность участвовать в работах по технико- экономическим обоснованиям проектируемых образцов низкотемпературной техники, по составлению отдельных видов технической документации машин и аппаратов, их элементов и сборочных единиц.	Выполнения предпроектных работ по созданию систем холодоснабжения кондиционирования воздуха.	Определять требуемую холодопроизводительность систем холодоснабжения предприятий, выполнять расчёт и подбор серийно выпускаемого холодильного оборудования в соответствии с правилами техники безопасности и требованиями нормативных документов, разрабатывать схемы холодильных установок.	Методик расчёта охлаждаемых помещений холодильных предприятий, расчёта тепловой изоляции и теплопритоков в охлаждаемых объектах, методику расчёта и подбора холодильного оборудования и трубопроводов; назначение узлов и элементов схем холодильных установок, области применения различных систем охлаждения.
Вид д	еятельности: Производ	цственно-технологическая дея	•
Профессиональные компетенции	Практический опыт	Умения	Знания
ПК-17, готовность участвовать в диагностике неисправностей низкотемпературных систем различною назначения и их устранении с использованием различных приспособлений и инструментов.	Диагностики неисправностей ХУ и СКВ и их устранение.	Выполнять работы по диагностике неисправностей ХУ и СКВ и их устранении с использованием различных приспособлений и инструментов.	Основных типов неисправностей ХУ и СКВ, способов их диагностики и устранения.
ПК-18, готовность выполнять регламентные и профилактические мероприятия, плановые и внеплановые ремонтные работы низкотемпературных объектов с целью увеличения срока их службы и надёжности.	Составления операционных карт механической обработки.	Выполнять регламентные и профилактические мероприятия, плановые и внеплановые ремонтные работы ХУ и СКВ.	Порядок проведения регламентных и профилактических мероприятий ХУ и СКВ с целью увеличения срока их службы и надёжности.

1.5. Характеристика квалификации и связанных с ней видов профессиональной деятельности

Характеристика новый квалификации и связанных с ней видов профессиональной деятельности, трудовых функций и уровней квалификации, приобретаемых обучающимися в рамках освоения ДПП, основываются на Приказе Минтруда России от 22.04.2021 N 269н «Об утверждении профессионального стандарта «Специалист по проектированию систем холодоснабжения» (Зарегистрировано в Минюсте России 24.05.2021 N 63603).

Связь ДПП с профессиональными стандартами, характеристика новый квалификации и связанных с ней видов профессиональной деятельности, трудовых функций и уровней квалификации представлена в Таблице 2.

Таблица 2. Связь ДПП с профессиональными стандартами

Наименование		Уровень квалификации
профессионального	Обобщённая трудовая функция	обобщённой трудовой
стандарта		функции
	Разработка и оформление	
	рабочей документации системы	
	холодоснабжения. Ремонт	
	систем кондиционирования	
	воздуха, вентиляционных,	
«Специалист по	теплонасосных и холодильных	
проектированию систем	установок повышенного уровня	4
холодоснабжения»	сложности, эксплуатация и	
	техническое обслуживание	
	систем кондиционирования	
	воздуха, вентиляционных,	
	теплонасосных и холодильных	
	установок.	

1.6. Планируемые результаты обучения по ДПП

Планируемыми результатами обучения по ДПП являются:

- освоение профессиональных компетенций в процессе изучения перечисленных в учебном плане тем;
- успешное прохождение промежуточной аттестации (тестирование);
- успешное прохождение итоговой аттестации (зачёта) по ДПП.

1.7. Форма обучения

Реализация данной ДПП предусмотрена по очной форме обучения.

2. СОДЕРЖАНИЕ ДПП

2.1. Общая трудоёмкость ДПП, аудиторная и самостоятельная работа

Общая трудоёмкость ДПП составляет 70 академических часов: из них 48 академических часа аудиторной работы (лекции и практические занятия), 18 академических часов самостоятельной работы, 2 академических часа - промежуточная аттестация, 2 академических часа - итоговая аттестация. 1 академический час= 45 минутам. Формы контроля по промежуточной и итоговой аттестации указаны в таблице 3.

2.2. Учебный план

Таблица 3. Учебный план

№ п/п	Наименование темы	Всего, акад. час,	Лекции, акад. час	Практические занятия (практикумы по решению задач, деловые игры), акад.	я работа, акад.	Форма контроля
1	Тема 1. Основы теории холодильной техники	22	8	8	6	_
2	Тема 2. Холодильные установки	22	8	8	6	_
1	Промежуточная аттестация	2		_	_	Тестирование
	Тема 3. Основные принципы построения СКВ	22	8	8	6	
5	Итоговая аттестация	2				Зачет
	ИТОГО	70	24	24	18	

2.3. Календарный учебный график

Таблица 4. Календарный учебный график

№ п/н	Наименование темы	1 день	2 день	3 день	4 день	5 день	6 день	7 день	8 день	9 день
1	Тема 1. Основы теории холодильной техники	8	8	6						
2	Тема 2. Холодильные установки				8	8	6			
3	Промежуточная аттестация						2			
	Тема 3. Основные принципы построения СКВ							8	8	6
5	Итоговая аттестация									2

Срок освоения ДПП - 9 дней.

3. РАБОЧАЯ ПРОГРАММА

Программа повышения квалификации посвящена изучению вопросов расчёта, эксплуатации, диагностики, нахождения и устранения неполадок XУ и СКВ.

Программа формирует общее представление об особенностях выполнения работ по расчёту, сборке, испытаниям, монтажу и эксплуатации ХУ и СКВ с целью оптимизации технологических процессов.

Планируемые результаты изучения тем программы

Код компетенции	Перечень планируемых результатов обучения	Формы и методы обучения, способствующие формированию и развитию компетенции
ПК-11, готовность участвовать в работах по технико- экономическим обоснованиям проектируемых образцов низкотемпературной техники, по составлению отдельных видов технической документации машин и аппаратов, их элементов и сборочных единиц.	Знать: схемные решения, функциональные возможности и принципы работы ХУ и СКВ; способы оценки энергетических характеристик установок низкотемпературной техники. Уметь: читать принципиальные схемы ХУ и СКВ; подбирать основные элементы, выполнять работы по технико-экономической оценке ХУ и СКВ. Владеть: методикой выбора основных элементов ХУ и СКВ, оценки энергоэффективности термодинамических циклов.	TATABLIA IJENI I
ПК-17, готовность участвовать в диагностике неисправностей низкотемпературных систем различною назначения и их устранении с использованием различных приспособлений и инструментов.	Знать: основные типы неисправностей, возникающих при работе ХУ и СКВ. Уметь: диагностировать различные виды неисправностей, возникающие при работе ХУ и СКВ. Владеть: различными приспособлениями, инструментами и приборами для диагностики и устранения неисправностей, возникающие при работе ХУ и СКВ.	Лекции, практические занятия (практикумы по решению задач, деловые игры) самостоятельная работа с источниками информации.

ПК-18, готовность выполнять регламентные и профилактические мероприятия, плановые и внеплановые ремонтные работы низкотемпературных объектов с целью увеличения срока их службы и надёжности.

Знать: основные типы регламентных и профилактических мероприятий, виды плановых и внеплановых ремонтных работ ХУ и СКВ.

Уметь: организовывать регламентные и профилактические работы, плановые и внеплановые ремонтные работы XУ и СКВ.

Владеть: методикой проведения регламентных и профилактических, плановых и внеплановых ремонтных работ мероприятий ХУ и СКВ с целью увеличения срока их службы и надёжности.

Лекции, практические занятия (практикумы по решению задач, тесты, деловые игры) самостоятельная работа с источниками информации.

ТЕМА 1. ОСНОВНЫЕ ТЕОРИИ ХОЛОДИЛЬНОЙ ТЕХНИКИ

Лекции по теме 1 (8 часов)

Теоретические основы получения искусственного холода. Теоретические циклы одноступенчатых парокомпрессионных холодильных машин. Действительные циклы: цикл с перегревом на всасывании, цикл с рекуперативным теплообменниками, цикл с бессальниковым компрессором. Причины перехода к многоступенчатому сжатию. Выбор промежуточного давления. Теоретические циклы двухступенчатых холодильных машин. Тепловой расчет на основе теплового и материального балансов действительных цикла и схемы двухступенчатых холодильных машин. Структура типовой парокомпрессионной холодильной машины с конденсатором воздушного охлаждения. Состав и назначение ее элементов. Условные обозначения в принципиальных и функциональных гидравлических и электрических схемах.

Знать: Теоретические основы получения искусственного холода, циклы одноступенчатых парокомпрессионных холодильных машин, структуру типовой парокомпрессионной холодильной машины с конденсатором воздушного охлаждения, условные обозначения в принципиальных и функциональных гидравлических и электрических схемах.

Уметь: производить тепловой расчет на основе теплового и материального балансов действительных цикла и схемы двухступенчатых холодильных машин; осуществлять выбор промежуточного давления; интерпретировать условные обозначения в принципиальных и функциональных гидравлических и электрических схемах

Практические занятие по теме 1 (8 часов)

Основные рабочие тела (фреоны, аммиак, углекислый газ. вода и др.) и сравнительный анализ их общих свойств, температур кипения, плавления тройной и критической точек, плотности жидких и твёрдых фаз. теплоты испарения, теплоёмкости, вязкости, теплопроводности. Специфические свойства фреонов, аммиака, воздуха. Проблема сохранения озонового слоя. Практические свойства рабочих веществ: взаимная растворимость с водой и маслом, взрывоопасность, взаимодействие с различными материалами. Знание основных компонентов системы холодильной установки. Взаимосвязь давления и температуры. Основы работы с инструментами и измерительными приборами. Основы работы со сжатыми газами и с резервуарами, находящимися под давлением.

Знать: основные рабочие тела (фреоны, аммиак, углекислый газ. вода и др.) и сравнительный анализ их общих свойств, температур кипения, плавления тройной и критической точек, плотности жидких и твёрдых фаз. теплоты испарения, теплоёмкости, вязкости, теплопроводности; специфические свойства фреонов, аммиака, воздуха.

Уметь: работать с инструментами и измерительными приборами; определять взаимосвязь давления и температуры.

Примеры типовых задач для практических занятий по теме 1

- 1. Для парокомпрессионной холодильной машины с воздушным конденсатором и испарителем задана температура воздуха, охлаждающего конденсатор 22 °C и воздуха, охлаждаемого в испарителе 2 °C. Полный перепад температур в конденсаторе составляет 12 °C, а в испарителе 5 °C. Определить давление всасывания и нагнетания в компрессоре для хладагента R134a. Диаграмма h-lgp для хладагента R134a прилагается.
- 2. Определить холодильный коэффициент, степень термодинамического совершенства, затрачиваемую электроэнергию холодильной машины, если температура конденсации составляет 42 °C. испарения 2 °C, мощность испарителя 15 кВт, конденсатора 25 кВт.
- 3. Для заданной температуры конденсации 32 °C определить во сколько раз увеличится потребляемая компрессором холодильной машины мощность, при понижении температуры испарения с 5 °C до –5 °C для хладагента R22.
- 4. Определить мощность конденсатора холодильной машины, если холодильный коэффициент составляет 2,5 при затрачиваемой мощности компрессора 17 кВт.

5. При неизменной температуре испарения и мощности испарителя 25 кВт определить на сколько увеличится потребление электроэнергии компрессором при увеличении температуры конденсации с 30 °C до 40 °C для хладагента R410.

Сценарии и темы деловых игр по теме 1

- 1. Оценить применимость различных типов холодильных установок в климатических условиях средней полосы России.
- 2. Оценка наиболее рациональных областей применения воздушных турбохолодильников.
 - 3. Предложить способы борьбы с утечками хладагента из холодильной машины.
- 4. Сделать сравнение различных типов хладагентов с точки зрения их безопасности для окружающей среды. температурного интервала применимости. экономической целесообразности использования.

Самостоятельная работа по теме 1 (6 часов)

Работа с информационными источниками

Самостоятельная работа по теме 1

Наименование темы	Дидактические единицы, вынесенные на самостоятельное изучение	Формы самостоятельной работы
Основы теории холодильной техники	Физические свойства рабочих тел холодильной техники и выбор оптимального хладагента на заданный температурный уровень	Работа с источниками основной и дополнительной литературы (согласно п. 4.3.1. Основная литература и п. 4.3.2. Дополнительная литература) по вопросам Темы 1.

ТЕМА 2. ХОЛОДИЛЬНЫЕ УСТАНОВКИ

Лекции по теме 2 (8 часов)

Классификация холодильных компрессоров: объёмные (поршневые, винтовые, роторные, спиральные), центробежные. Особенности их конструкций. Пределы холодопроизводительности каждого из типов машин. Основы расчёта поршневых,

винтовых и центробежных холодильных компрессоров. Характеристики и регулирование холодильных компрессоров. Парокомпрессионные холодильные машины. Состав, назначение отдельных частей. Терморегулирующие вентили с внешним и внутренним выравниванием. Ресивер и его назначение, определение минимального объёма ресивера. Одно- и двухступенчатые, каскадные. Особенности регулирования парокомпрессионных холодильных установок. Диагностика неисправностей парокомпрессионных холодильных установок. Проблемы возврата масла и наличия неконденсирующихся примесей в холодильном тракте. Характеристики цикла. Назначение и области применения тепловых насосов. Специализированные контроллеры для холодильной техники. Проблемы нижнего температурного источника. Отопительный коэффициент. Нормы и правила в области проектирования, монтажа и эксплуатации холодильного оборудования. Федеральные законы, технические регламенты, стандарты, руководящие материалы.

Знать: классификацию холодильных компрессоров: объёмные (поршневые, винтовые, роторные, спиральные), центробежные, особенности их конструкций; особенности регулирования парокомпрессионных холодильных установок; Федеральные законы, технические регламенты, стандарты, руководящие материалы.

Уметь: производить диагностику неисправностей парокомпрессионных холодильных установок; применять на практике нормы и правила в области проектирования, монтажа и эксплуатации холодильного оборудования.

Практические занятия по теме 2 (8 часов)

Классификация и конструкции конденсаторов различных типов. Условия повышения интенсивности работы конденсаторов. Полный перепад температур в конденсаторе и его влияние па энергетическую и экономическую эффективность работы холодильной машины. Переохлаждение хладагента в конденсаторе. Тепловой и конструктивный расчёт горизонтальных кожухотрубчатых и воздушных конденсаторов с гладкими и ребристыми трубами. Конденсаторы-испарители каскадных холодильных машин. Классификация и конструкции испарителей различных типов. Выбор величины перегрева хладагента и полного перепада температур в испарителе. Тепловой и конструктивный расчёт кожухотрубных испарителей с кипением в межтрубном пространстве и с кипением внутри труб. Воздушные испарители для систем кондиционирования воздуха.

Оборудование и инструменты, используемые при монтажных, пусконаладочных работах и эксплуатации холодильных систем. Особенности выполнения основных операций при монтаже холодильных систем. Работа с хладагентами и маслами.

Пусконаладочные работы. Методы диагностики работы парокомпрессионной холодильной машины с компрессором объёмного действия. Алгоритмы выявления неисправностей.

Знать: классификацию и конструкции конденсаторов различных типов, особенности выполнения основных операций при монтаже холодильных систем, классификацию и конструкции испарителей различных типов.

Уметь: производить тепловой и конструктивный расчёт горизонтальных кожухотрубчатых и воздушных конденсаторов с гладкими и ребристыми трубами; работать с хладагентами и маслами; осуществлять пусконаладочные работы; учитывать на практике особенности выполнения основных операций при монтаже холодильных систем.

Примеры типовых задач для практических занятий по теме 2

- 1. Для парокомпрессионной холодильной машины с воздушным испарителем задана его мощность 15 кВт, средняя разность температур 12 °С и площадь теплообменной поверхности 5 м². Определить средний удельный коэффициент теплопередачи в испарителе.
- 2. Определить интегральный коэффициент теплопередачи в конденсаторе холодильной машины, если коэффициент теплоотдачи и площадь теплообменной поверхности со стороны воздуха составляет $8 \, \mathrm{Bt/m^2} \, \mathrm{K} \, \mathrm{u} \, 10 \, \mathrm{m^2}$, коэффициент теплоотдачи и площадь теплообменной поверхности со стороны кипящего хладагента составляет $85 \, \mathrm{Bt/m^2} \, \mathrm{K} \, \mathrm{u} \, 3 \, \mathrm{m^2}$.
- 3. Определить эффективность двухпоточного противоточного теплообменного аппарата холодильной машины, если температура прямого потока на входе в теплообменный аппарат составляет 2 °C. на выходе -12 °C. для обратного потока -20 °C и -5 °C соответственно.
- 4. Определить мощность конденсатора холодильной машины, если массовых расход хладагента составляет 0,025 кг/с. энтальпия на входе равна 1200 кДж/кг. энтальпия на выходе 1200 кДж/кг.
- 5. Определить площадь теплообменной поверхности испарителя, если средняя разность температур составляет 12 °C, удельный коэффициент теплопередачи равен 25 Вт/м² К, мощность конденсатора равна 25 кВт.

Сценарий и темы деловых игр по теме 2

- 1. Оценить применимость различных типов компрессоров парокомпрессионных холодильных установок для различных холодильных мощностей и температурных уровней.
- 2. Предложить оптимальный тип холодильной машины при давлении всасывания в компрессор ниже атмосферного.

- 3. Рассмотреть различные способы регулирования холодопроизводительности холодильной машины и выбрать наиболее рациональный для заданного низкотемпературного объекта.
- 4. Сделать сравнение различных типов хладагентов с точки зрения их безопасности для окружающей среды, температурного интервала применимости. экономической целесообразности использования.

Самостоятельная работа по теме 2 (6 часов)

Работа с информационными источниками

Самостоятельная работа по теме 2

Наименование темы	Дидактические единицы, вынесенные на самостоятельное изучение	Формы самостоятельной работы
Холодильные установки	Характеристики промышленных холодильных установок для систем кондиционирования воздуха	Работа с источниками основной и дополнительной литературы (согласно п. 4.3.1. Основная литература и п. 4.3.2. Дополнительная литература) по вопросам Темы 2.

Промежуточная аттестация (2 часа)

Промежуточная аттестация проходит в форме тестирования слушателей по содержанию Темы 1 и Темы 2. Вариант теста для промежуточной аттестации представлен в разделе 5.1.1. Комплект оценочных средств по промежуточной аттестации.

ТЕМА 3. ОСНОВНЫЕ ПРИНЦИПЫ ПОСТРОЕНИЯ СКВ

Лекции по теме 3 (8 часов)

Отличие вентиляции от кондиционирования. Основные задачи кондиционирования. Центральные и местные системы кондиционирования. Обработка воздуха в центральных кондиционерах: очистка, увлажнение, осущение, нагрев, охлаждение. Модульный принцип построения центральных кондиционеров. Основные части центральных кондиционеров. Различные схемы центральных кондиционеров: прямоточные кондиционеры, с первой и второй рециркуляцией. Утилизация теплоты вытяжного воздуха с помощью теплообменников-теплоутилизаторов рекуперативного и регенеративного типов.

Системы с чилерами и фанкойлами: состав, особенности, характеристики и области применения. Организация движения промежуточного хладоносителя. Баки-аккумуляторы: назначение, типы, состав. Определение номинальной мощности холодильной машины и минимального объёма бака-аккумулятора.

Знать: отличие вентиляции от кондиционирования, основные задачи кондиционирования, центральные и местные системы кондиционирования, различные схемы центральных кондиционеров, системы с чилерами и фанкойлами.

Уметь: определять номинальную мощность холодильной машины и минимальный объём бака-аккумулятора; работать с различными схемами центральных кондиционеров.

Практические занятия по теме 3 (8 часов)

Расчёт тепловых нагрузок на основные элементы центральных кондиционеров в зимнее и летнее время. Сопоставление значений тепловых нагрузок для прямоточных центральных кондиционеров И c рециркуляцией. Расчёт теплообменниковтеплоутилизаторов в летнее и зимнее время. Условия «незамерзания» теплообменника в зимнее время. Определение параметров нагрева наружного воздуха перед смешением с рециркуляционным воздухом в камере смешения центрального кондиционера в зимнее время. Определение времени выхода на режим. Расчёт тепловых нагрузок на элементы кондиционера - испаритель и конденсатор, используя тепловой баланс воздушных потоков, входящих и выходящих из испарителя и конденсатора. Определение мощности компрессора. Составление теплового баланса кондиционера и определение погрешности измерений и вычислений.

Возможные неисправности систем кондиционирования воздуха и способы их устранения. Профилактические и ремонтные работы систем кондиционирования воздуха. Обслуживание систем кондиционирования.

Регулирование и автоматизация систем кондиционирования. Регулирование холодопроизводительности установки кондиционирования воздуха в зависимости от изменения климатических условий. Работа запорно-регулирующей аппаратуры системы кондиционирования. Термостаты, гумидостаты. Их конструкции, принцип действия, настройка и применение. Возможные виды неполадок элементов регулирование и способы их устранения. Размещения чувствительных элементов термостатов в кондиционируемом помещении для создания наилучших климатических режимов.

Знать: условия «незамерзания» теплообменника в зимнее время; параметры нагрева наружного воздуха перед смешением с рециркуляционным воздухом в камере смешения

центрального кондиционера в зимнее время; особенности работы запорно-регулирующей аппаратуры системы кондиционирования.

Уметь: производить расчёт тепловых нагрузок на основные элементы центральных кондиционеров в зимнее и летнее время; сопоставлять значения тепловых нагрузок для прямоточных центральных кондиционеров и с рециркуляцией; производить расчёт теплообменников-теплоутилизаторов в летнее и зимнее время; определять возможные виды неполадок элементов регулирование и способы их устранения.

Примеры типовых задач для практикумов по теме 3

- 1. Для заданных параметров наружного воздуха: температура 30 °C и относительная влажность 50%. расход 10000 нм³/час определить количество сконденсировавшейся в воздухоохладителе влаги, если температура воздуха после воздухоохладителя составляет 8 °C.
- 2. Определить тепловую нагрузку на воздухоохладитель, если расход проходящего воздуха составляет 3000 нм³/час, температура на входе 26 °C, относительная влажность 70%, влагосодержание на выходе составляет 7 г/кг.
- 3. Определить параметры воздуха в камере смешения двух воздушных потоков. Первый поток имеет объёмный расход 3000 нм³/час: температуру 20 °C и относительную влажность 35%. Второй поток имеет объёмный расход 3000 нм³/час, температуру 30 °C: относительную влажность 50%.
- 4. Определить затрачиваемую электрическую мощность крышного кондиционера в летнее время, если расход проходящего воздуха составляет 10000 нм³/час, температура на входе 28 °C, относительная влажность 70%, на выходе соответственно 16 °C и 100%. Холодильный коэффициент составляет 2,5.
- 5. Определить объём аккумуляторного бака центрального кондиционера, если избыточная теплота составляет 3200000 кДж, рабочая разность температур 2 °C. Хладоноситель имеет теплоёмкость 4 кДж/кг*град. плотность 950 кг/м³.

Сценарий и темы деловых игр по теме 3

- 1. Оценить применимость рециркуляции вытяжного воздуха в центральных кондиционерах для различных кондиционируемых помещений.
- 2. Сравнить между собой способы борьбы с обмерзанием теплообменниковутилизаторов теплоты в зимнее время.
- 3. Предложить способы максимального использования теплоты вытяжного воздуха.

4. Предложить способы понижения затрат электроэнергии при работе центрального кондиционера.

Самостоятельная работа по теме 3 (6 часов).

Работа с информационными источниками

Самостоятельная работа по теме 3

Наименование темы	Дидактические единицы, вынесенные на самостоятельное изучение	Формы самостоятельной работы
Основные принципы построения СКВ	Типы и характеристики промышленных кондиционеров, выпускаемых различными отечественными и зарубежными фирмами	Работа с источниками основной и дополнительной литературы (согласно п. 4.3.1. Основная литература и п. 4.3.2. Дополнительная литература) по вопросам Темы 2

Итоговая аттестация (2 часа)

Итоговая аттестация по курсу проходит в форме зачета по билетам.

Оценочные материалы для проведения зачета представлены в разделе 5.2. Оценочные материалы итоговой аттестации.

Билеты включают вопросы согласно списку вопросов, представленному в Разделе 5.2.1.

Комплект оценочных средств по итоговой аттестации

4. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ДПП

4.1. Отбор педагогов, участвующих в обучении

Занятия проводятся преподавателями, имеющими высшее техническое профильное образование в области холодильной техники, систем вентиляции и кондиционирования, либо высшее техническое непрофильное образование или среднее техническое непрофильное образование и дополнительное профессиональное образование, но при наличии стажа работы в области холодильной техники, систем вентиляции и кондиционирования не менее трех лет.

4.2. Материально-техническое оснащение ДПП

Оборудование учебных аудиторий, предназначенных для проведения занятий:

Часть комнаты № 1:

Столы -3 шт;

Стулья -12 шт;

Ноутбук для обучающихся - 10 шт;

Компьютер для преподавателя – 1 шт;

Мультимедийный проектор – 1 шт;

Экран для проектора – 1 шт;

Доска для записей- 1 шт;

Макеты компонентов холодильных установок – 5 шт.

Часть комнаты № 13:

Столы -3 шт;

Стулья – 12 шт;

Ноутбук для обучающихся - 10 шт;

Компьютер для преподавателя – 1 шт;

Мультимедийный проектор -1 шт;

Экран для проектора – 1 шт;

Доска для записей- 1 шт;

Комната № 11:

Столы -3 шт;

Стулья -12 шт;

Ноутбук для обучающихся - 10 шт;

Компьютер для преподавателя – 1 шт;

Мультимедийный проектор -1 шт;

Экран для проектора – 1 шт;

Доска для записей- 1 шт;

4.3. Учебно-методическое обеспечение ДПП

4.3.1. Основная литература

1. Теплотехника: учебник для вузов / Александров А. А., Архаров А. М., Архаров И. А. [и др.]; общ. ред. Архаров А. М., Афанасьев В. Н. — 3-е изд., перераб. и доп. — М.: Изд-во МГТУ им. Н. Э. Баумана. 2011. — 791 с.: ил. — Библиогр.: с. 788. — ISBN 978-5-7038-3370-4.

- 2. Лэнгли Б. Руководство по устранению неисправностей в оборудовании для кондиционирования воздуха и в холодильных установках. М. «Евроклимат». Изд-во «Техносфера». 2003 г. 230 с. ISBN:5-94836-047-4.
- 3. Котзаогланиан П. Пособие для ремонтника: справочное руководство по монтажу, эксплуатации, обслуживанию и ремонту современного оборудования холодильных установок и систем кондиционирования воздуха/ Пер. с франц. и ред. Сапожникова В.Б. М.: АНОО Учебный центр «Остров», 2007.

4.3.2. Дополнительная литература

- 1. Хоран Дж., Доссат Р. Дж. Основы холодильной техники / Хоран Т. Дж.. Доссат Р. Дж.; пер. с англ. Аникин С. В.; ред. пер. Каплан Л. Г. М. : Техносфера. 2008. 821 с.: ил. (Мир физики и техники). ISBN 978-5-94836-158-1.
- 2. Мааке В., Эккерт Г.-Ю., Кошпен Ж.-Л. Учебник по холодильной технике. Основы Комплектующие Расчеты. Монтаж, эксплуатация и техническое обслуживание холодильных установок. Пер. с франц. под ред. Сапожникова В.Б. М.: МГУ, 1998. 1142 с.
- 3. Брайдерт Г.-И. Проектирование холодильных установок. Расчёты, параметры, примеры: пер. с нем. / Брайдерт Г.-Й.; пер. Казанцева Л. II. М.: Термокул: Техносфера. 2006. 335 с.: ил. (Мир физики и техники). ISBN 5-94836-089-X.
- 4. СНиП 41-01-2003 Отопление, вентиляция и кондиционирование. / Госстрой России. М., 2004 г. 98 с.
- 5. ГОСТ EN 378-1-2014 Системы холодильные и тепловые насосы. Требования безопасности и охраны окружающей среды. Часть 1. Основные требования, определения, классификация и критерии выбора / Стандартинформ. М., 2014 г.
- 6. ГОСТ EN 378-2-2014 Системы холодильные и тепловые насосы. Требования безопасности и охраны окружающей среды. Часть 2. Проектирование, конструкция, изготовление, испытания, маркировка и документация/ Стандартинформ. М., 2014 г.
- 7. ГОСТ EN 378-3-2014 Системы холодильные и тепловые насосы. Требования безопасности и охраны окружающей среды. Часть 3. Размещение оборудования и защита персонала/ Стандартинформ. М., 2014 г.
- 8. ГОСТ EN 378-4-2014 Системы холодильные и тепловые насосы. Требования безопасности и охраны окружающей среды. Часть 4. Эксплуатация, техническое обслуживание, ремонт и восстановление/ Стандартинформ. М., 2014 г.

Методические рекомендации

Преподавание программы основано на личностно ориентированной технологии образования, сочетающей два равноправных аспекта этого процесса: обучение и учение. С учётом этого, в учебные материалы дисциплины включена информация нескольких видов:

- занятия, предназначенные для приобретения слушателями знаний в области расчёта и проектирования ХУ и СКВ, анализа различных холодильных установок и систем кондиционирования;
- занятия, предназначенные для развития у слушателей способности эксплуатации, ремонта и технического обслуживания XV и СКВ, определения рациональной области применения различные типов XV и СКВ.

Личностно-ориентированный подход развивается при участии слушателей в деловых играх, направлен в первую очередь на развитие индивидуальных способностей обучающихся, создание условий для развития творческой активности слушателя и разработке инновационных идей, применимых в области расчёта, проектирования, эксплуатации, ремонта и технического обслуживания ХУ и СКВ.

ДПП построена по тематическому принципу, каждая тема представляет собой логически завершённый элемент.

На первом занятии каждый слушатель получает на весь период обучения полный комплекс учебно-методических материалов по программе обучения.

Самостоятельная работа слушателей предназначена для внеаудиторной работы по закреплению теоретического материала и практических навыков.

Приступая к работе над ДПП каждый слушатель должен принимать во внимание следующие положения:

- Освоение материала, его успешное закрепление на стадии промежуточной аттестации возможно только при регулярной работе во время занятий и планомерной самостоятельной работе.
- Самостоятельная работа предусматривает не только проработку материалов лекционного курса, но и их расширение в результате поиска, анализа, структурирования и представления в компактном виде современной информации из всех возможных источников.

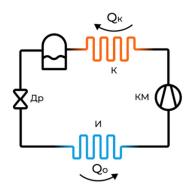
5. ФОРМЫ АТТЕСТАЦИИ

Программа повышения квалификации содержит **промежуточную и итоговую** аттестацию.

5.1. Оценочные материалы промежуточной аттестации

Промежуточная аттестация реализуется после изучения Темы 2 в форме **тестирования.**

Критерии оценивания тестирования:


1	Отлично	14-15 правильных ответов из 15
2	Хорошо	13 правильных ответов из 15
3	Удовлетворительно	12 правильных ответов из 15
4	Неудовлетворительно	11 и менее правильных ответов из 15

5.1.1. Комплект оценочных средств по промежуточной аттестации

Вариант теста для промежуточной аттестации

Вопрос № 1.

Где скапливаются излишки хладагента в системе при излишней заправке (см. рис.)?

Варианты ответов:

- а) в испарителе;
- b) в конденсаторе;
- с) в ресивере и если он переполнен, то и в конденсаторе;
- d) в ресивере и если он переполнен, то и в испарителе.

Вопрос № 2

Избыток хладагента в контуре вызывает?

Варианты ответов:

- а) повышение давления конденсации и массового расхода газа;
- b) понижение давления конденсации и массового расхода газа;
- с) повышение давления конденсации и снижению массового расхода газа;

d) понижение давления конденсации и повышение массового расхода газа.

Вопрос № 3

Как избыток хладагента влияет на работу герметичного компрессора? Варианты ответов:

- а) компрессор потребляет из сети больший ток, массовый расход паров на всасывании снижается и температура компрессора увеличивается;
- b) компрессор может покрыться инием из-за увеличения массового расхода всасываемых паров;
- с) компрессор потребляет из сети больший ток, массовый расход паров на всасывании повышается и температура компрессора не меняется;
 - d) существенного влияние на компрессор избыток хладагента не оказывает.

Вопрос № 4

Как влияет наличие неконденсируемых примесей в системе на давление конденсации?

Варианты ответов:

- а) увеличивает;
- b) уменьшает;
- с) не влияет.

Вопрос № 5

Где можно стравить неконденсируемые примеси из системы?

Варианты ответов:

- а) на сервисном клапане компрессора;
- b) на клапане сверху рессивера;
- с) извлечь примеси из системы без перезаправки невозможно;
- d) ослабив гайку на выходном штуцере ресивера (если соединение вальцованное).

Вопрос № 6

Преждевременное дросселирование холодильного агента приводит к ...? Варианты ответов:

а) растет давление в испарителе. Производительности конденсатора становиться недостаточно.

- b) падает давление в испарителе. Производительности конденсатора становиться недостаточно.
- с) растет давление в испарителе. Конденсатор оказывается переразмерен.
- d) падает давление в испарителе. Конденсатор оказывается переразмерен.

Вопрос № 7

Какое влияние оказывает повышенный перегрев после испарителя на холодопроизводительность?

Варианты ответов:

- а) давление кипения повышается, холодопроизводительность растет.
- b) давление кипения повышается, холодопроизводительность падает.
- с) давление кипения понижается, холодопроизводительность растет.
- d) давление кипения понижается, холодопроизводительность падает.

Вопрос № 8

Чем опасен слишком маленький перегрев после испарителя?

Варианты ответов:

- а) уносом масла из картера компрессора
- b) попаданием жидкого хладагента в компрессор
- с) повышением потребления тока компрессора
- d) существенным снижением давления всасывания

Вопрос № 9

По какому параметру следует контролировать заправку холодильного агента в систему?

Варианты ответов:

- а) перегрев после испарителя
- b) переохлаждение после конденсатора
- с) давление в испарителе
- d) давление в конденсаторе

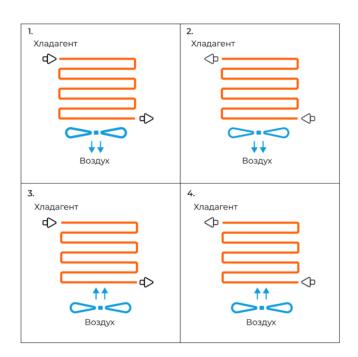
Вопрос № 10

Как проявляет себя в системе слишком слабый испаритель?

Варианты ответов:

- а) падение давления кипения, сопровождаемое слабым перегревом.
- b) падение давления кипения, сопровождаемое сильным перегревом.

- с) повышение давления кипения, сопровождаемое слабым перегревом.
- d) повышение давления кипения, сопровождаемое сильным перегревом.


Вопрос № 11

Как проявляет себя в системе слишком слабый конденсатор? Варианты ответов:

- а) падение давления конденсации, сопровождаемое слабым переохлаждением после конденсатора.
- b) падение давления конденсации, сопровождаемое сильным переохлаждением.
- с) повышение давления конденсации, сопровождаемое слабым переохлаждением.
- d) повышение давления конденсации, сопровождаемое сильным переохлаждением.

Вопрос № 12

Какой вариант подключение конденсатора (см. рис.) является наилучшим с точки зрения теплообмена и надежности установки?

Варианты ответов:

- a) 1
- b) 2
- c) 3
- d) 4

Вопрос № 13

Почему может произойти внезапное вскипание холодильного агента в системе? Варианты ответов:

- а) потерея давления на местных сопротивлениях
- b) неправильно подобранный диаметр при большой протяженности магистрали
- с) маленькая величина переохлаждения после конденсатора
- d) все вышеперечисленные причины

Вопрос № 14

Как будет проявлять себя в системе компрессор слишком малой производительности?

Варианты ответов:

- а) повышается давления кипения при нормальном или несколько заниженном давлении конденсации
- b) падает давление кипения при нормальном или несколько заниженном давлении конденсации
- с) падает давления кипения при повышенном давлении конденсации
- d) повышается давления кипения при повышенном давлении конденсации

Вопрос № 15

Как будет проявлять себя в системе переразмеренный TPB? Варианты ответов:

- а) холодопроизводительность падает, уменьшается давление конденсации
- b) холодопроизводительность уменьшается, возрастает давление конденсации
- с) холодопроизводительность нормальная, возрастает давление конденсации
- d) холодопроизводительность нормальная, падает давление конденсации

5.2. Оценочные материалы итоговой аттестации

Итоговая аттестация проводится в форме зачёта по окончанию изучения всех тем программы, а также сдачи промежуточной аттестации.

Зачёт проводится в присутствии только экзаменаторов. Экзаменаторами могут быть только преподаватели, участвующие в реализации ДПП.

Средства оценки текущей успеваемости (фонд оценочных средств) по итогам освоения ДПП представляют собой комплект контролирующих мероприятий следующих видов:

- ответ на вопросы экзаменатора;
- общая дискуссия; сравнительная оценка, анализ ошибок;
- итоговое обсуждение результатов обучения.

Разработанные критерии оценки позволяют оценить приобретённые навыки и умения на репродуктивном уровне, когнитивные умения на продуктивном уровне, и способствуют формированию соответствующих компетенций слушателей.

Оценка успешности освоения программы слушателем:

- «зачёт» более 75% правильных ответов;
- «незачёт» менее 75% правильных ответов.

 Регламент проведения зачёта включает в себя следующие действия:
- получении экзаменующимся билета с вопросами;
- самостоятельной подготовки к письменному ответу на вопросы билета с использованием справочных материалов в течение времени не более 1 академического часа (45 минут);
- проверке экзаменатором письменных ответов на вопросы билета;
- ответы на дополнительные вопросы экзаменатора;
- оценивании экзаменатором совокупности письменных и устных ответов экзаменующегося с учётом его активности при проведении занятий.

Билет для проведения зачёта включает два теоретических вопроса из трёх рассмотренных тем.

Паспорт комплекта оценочных средств.

Предметы оценивания	Объекты оценивания Уровень освоения содержания	Показатели оценки
ПК-11, готовность участвовать в работах по технико- экономическим обоснованиям проектируемых образцов низкотемпературной техники, по составлению отдельных видов технической документации машин и аппаратов, их	 ответы на вопросы билета; ответы на вопросы экзаменатора; время, затраченное на подготовку ответов. 	 полнота изложения материала; логическое построение излагаемого материала; способность использовать полученные знания для ответов на поставленные вопросы в смежных областях.

ПК-17, готовность участвовать в диагностике неисправностей низкотемпературных систем различною назначения и их устранении с использованием различных приспособлений и инструментов.	 ответы на вопросы билета; ответы на вопросы экзаменатора; время, затраченное на подготовку ответов. 	 полнота изложения материала; логическое построение излагаемого материала; способность использовать полученные знания для ответов на поставленные вопросы в смежных областях.
ПК-18, готовность выполнять регламентные и профилактические мероприятия, плановые и внеплановые ремонтные работы низкотемпературных объектов с целью увеличения срока их службы и надёжности.	 ответы на вопросы билета; ответы на вопросы экзаменатора; время, затраченное на подготовку ответов. 	 полнота изложения материала; логическое построение излагаемого материала; способность использовать полученные знания для ответов на поставленные вопросы в смежных областях.

5.2.1. Комплект оценочных средств по итоговой аттестации

Комплектом оценочных средств освоения ДПП являются билеты для проведения зачёта, включающие в себя два теоретических вопроса из следующего списка:

- 1. Основные характеристики компрессоров.
- 2. Способы теплопередачи.
- 3. Одноступенчатый цикл парокомпрессионной холодильной машины.
- 4. Подбор и определение параметров основных элементов холодильного контура.
 - 5. Особенности конденсаторов холодильных машин.
 - 6. Возврат масла в холодильной установке.
 - 7. Диагностика работы холодильной машины.
 - 8. Классификация и расчёт теплопритоков в охлаждаемое пространство.
- 9. Основные типы заправки терморегулирующего вентиля холодильной машины.
 - 10. Общий состав систем кондиционирования с чиллерами и фанкойлами.
- 11. Центральные кондиционеры. Состав, достоинства и различные схемы исполнения.
 - 12. Диаграмма свойств влажного воздуха Рамзина Молье.
 - 13. Типы воздухоохладителей холодильных и климатических систем.

- 14. Утилизация теплоты вытяжного воздуха в центральных кондиционерах.
- 15. Поршневые компрессоры. Их основные отличия от других типов компрессоров.
- 16. Основные принципы организации автоматического управления холодильных установок и систем кондиционирования воздуха.
 - 17. Хладагенты холодильных установок.
- 18. Оборудование и инструменты, используемые при монтажных, пусконаладочных работах и эксплуатации холодильных систем.
- 19. Признаки наличия неконденсирующихся примесей в холодильном агенте в холодильной установке.
 - 20. Двухступенчатый цикл парокомпрессионной холодильной машины.
 - 21. Регулирования холодопроизводительности холодильной установки.
 - 22. Типы воздухонагревателей центральных кондиционеров.
 - 23. Признаки нехватки хладагента в холодильной установке.
- 24. Шкафные кондиционеры. Состав, достоинства и различные схемы исполнения.
 - 25. Обслуживание систем кондиционирования воздуха.
- 26. Приближённый расчёт теплообменника утилизатора теплоты вытяжного воздуха.
 - 27. Винтовые компрессоры. Их основные отличия от других типов компрессоров.
- 28. Особенности схем холодоснабжения с применением промежуточного теплоносителя.
- 29. Структура типовой парокомпрессионной холодильной машины с конденсатором воздушного охлаждения. Состав и назначение её элементов.
- 30. Физические основы термовлажностной обработки воздуха и трансформации теплоты.

Лицам, успешно освоившим программу повышения квалификации и прошедшим итоговую аттестацию, выдается удостоверение о повышении квалификации установленного в организации образца.

Лицам, не прошедшим итоговую аттестацию, выдается справка об обучении или о периоде обучения по образцу, самостоятельно устанавливаемому организацией.

Составители программы:

Руководитель отдела развитий компетенций ООО «ТехноФрост» к.т.н. Малафеев Илья Игоревич