Что такое энергоэффективность и какие способы ее оценки существуют?

Академия КриоФрост
энергоэффективность холодильной системы

По оценке, приведенной в марте 2023 года Интернет-порталом Refrigeration World, холодильное оборудование и системы кондиционирования воздуха потребляют около 20% всей производимой в мире электроэнергии, производя примерно 8% мировых парниковых выбросов.

При этом утечки хладагентов в процессе монтажа, работы, обслуживания и выведения оборудования из эксплуатации составляют лишь 37% от общих парниковых выбросов холодильных и климатических систем. Оставшиеся 63% приходятся на косвенные выбросы, связанные с производством электроэнергии.

Исследования показывают, что отказ от фторсодержащих газов в пользу природных веществ, таких как аммиак, диоксид углерода (CO2), углеводороды, вода и воздух, позволяет существенно сократить как прямые, так и косвенные выбросы оборудования, поскольку природные вещества отличаются не только нулевым или пренебрежимо малым потенциалом глобального потепления (ПГП), но и высокой энергоэффективностью при использовании в качестве хладагентов.

Одним из таких исследований стала оценка жизненного цикла бытовых тепловых насосов «воздух-вода», проведенная Институтом энергетической эффективности зданий и микроклимата при Рейнско-Вестфальском техническом университете Ахена (Германия). В ходе оценки сравнивались три фторсодержащих хладагента (ГФУ и ГФО) и четыре природных вещества (три простых углеводорода и аммиак). Для каждого вещества исследователи рассчитали удельный заряд и показатель энергоэффективности, на основании которых получили величину заправки и количество электрической энергии, необходимых для отопления одноквартирного дома в климатических условиях Западной Германии.

В качестве показателя энергоэффективности был взят сезонный коэффициент производительности SCOP, значения которого составили, соответственно: 3,71 для ГФУ-410a, 3,99 для ГФУ-32, 3,82 для ГФО-1234yf, 4,2 для пропана (R290), 4,19 для пропилена (R1270), 3,81 для изобутана (R600a) и 4,27 для аммиака (R717).

Чтобы разобраться, в чем заключается физический смысл приведенных цифр, и почему именно показатель SCOP лучше всего подходит для оценки энергоэффективности в данном случае, вспомним, что же такое энергоэффективность сама по себе, и какие существуют способы ее оценки.

Энергоэффективность

Эффективностью принято называть соотношение затраченных усилий и полученного результата: чем меньше тратится усилий при неизменном результате, тем она выше. Энергетическая эффективность (энергоэффективность) – это то же соотношение, в котором затраченные усилия выражаются в форме потребленной энергии. Стандарт ISO 50001 определяет энергоэффективность как отношение или другую количественную взаимосвязь между результатом работы, услуги, произведенными товарами или энергией и потребленной энергией, поступившей на вход.

Результат работы холодильной техники – холодопроизводительность, измеряемая в киловаттах, а затраченное усилие – входная электрическая (иногда – механическая) мощность, также выраженная в киловаттах. Соответственно, показатель энергоэффективности холодильного оборудования представляет собой безразмерную величину.

COP, EER и COSP

Чаще всего для определения энергоэффективности холодильного оборудования, систем кондиционирования воздуха и тепловых насосов используют показатель COP — коэффициент производительности или холодильный коэффициент, определяемый формулой:

COP = выходная мощность (холодопроизводительность), кВт/ входная мощность, кВт

Показатель COP рассчитывается при полной (100%) нагрузке.

Исторически холодопроизводительность для кондиционеров воздуха часто указывается в BTU/h (БТЕ/ч) — британских тепловых единицах в час, а для мощных чиллеров — в холодильных тоннах (х. т., RT). Кроме того, может использоваться и такая единица, как лошадиная сила (л. с., hp). Чтобы получить соответствующие значения в кВт, следует использовать следующие пересчетные коэффициенты:

  • 1 кВт = 3412,142 BTU/h

  • 1 кВт = 0,284 х. т.

  • 1 кВт = 1,34 л. с.

В Европе для измерения энергоэффективности при охлаждении принято использовать аналогичный по смыслу показатель EER (Energy Efficiency Rate – показатель энергоэффективности):

EER = выходная мощность (холодопроизводительность), кВт/ входная мощность, кВт

Показатель EER рассчитывается при полной (100%) нагрузке.

COP в Европе используется для измерения энергоэффективности обогрева (режима теплового насоса) и определяется как:

COP = производительность конденсации, кВт/ входная мощность, кВт, что эквивалентно:

COP = (холодопроизводительность + входная мощность), кВт/ входная мощность, кВт

Показатель энергоэффективности EER введен Европейским комитетом изготовителей оборудования для обработки и кондиционирования воздуха EUROVENT. Номинальное значение EER определяется для одних и тех же стандартных температур испарения и конденсации, чтобы иметь возможность сравнить энергоэффективность разного оборудования.

Для измерения общей энергоэффективности установки используется показатель COSP –коэффициент производительности системы. Он учитывает все вспомогательные нагрузки, например, электродвигатели вентиляторов и насосов, а также другое оборудование, обеспечивающее функционирование системы.

Коэффициент производительности системы COSP определяется как отношение холодопроизводительности к сумме всей мощности, потребляемой системой (компрессорами, вентиляторами, насосами, устройствами управления и т. д.):

COSP = холодопроизводительность, кВт/ Σ входная мощность (компрессоры, вентиляторы, насосы, устройства управления…), кВт

SCOP, ESEER и IPLV

Показатели COP и EER отражают энергоэффективность установок при 100%-ной нагрузке, однако, как правило, холодильное оборудование бывает полностью нагружено лишь в ограниченный период времени. Степень нагрузки на системы кондиционирования и тепловые насосы в значительной степени определяется температурой наружного воздуха. В качестве показателей, более точно отражающих энергоэффективность установок при неполной нагрузке, были предложены сезонные коэффициенты SCOP и ESEER.

Европейский сезонный коэффициент энергоэффективности ESEER разработан в результате исследования изменений тепловой нагрузки зданий и режима эксплуатации зданий в Европе в течение года. По сути, ESEER является суммой коэффициентов энергоэффективности (EER) при нагрузке 100%, 75%, 50% и 25%, длящейся, соответственно 3%, 33%, 41% и 23% от общего времени работы (табл. 1).

Таблица 1. Рабочие температуры и весовые коэффициенты для расчета ESEER чиллеров с воздушным и водяным охлаждением в Европе 

Рабочие температуры и весовые коэффициенты для расчета ESEER чиллеров с воздушным и водяным охлаждением в Европе

Показатель ESEER рассчитывается по формуле:

ESEER = А*EER100% + В*EER75% + С*EER50% + D*EER25%,

где A, B, С и D – весовые коэффициенты, равные, соответственно 0,03, 0,33; 0,41 и 0,23.

Для определения среднегодовой эффективности тепловых насосов в Европе применяется аналогичный показатель — сезонный коэффициент производительности SCOP, методика вычисления которого описана в стандарте EN 14825.

Принцип вычисления SCOP заключается в разделении всего времени отопительного сезона на периоды («корзины») с различной температурой наружного воздуха и соответствующей тепловой нагрузкой. Для всех «корзин» определяются значения COP и складываются с учетом продолжительности каждой «корзины». Стандарт обязывает указывать SCOP для умеренного климата (A, соответствует Страсбургу), кроме того, может быть указан SCOP для зон жаркого (W, соответствует Афинам) и холодного (C, соответствует Хельсинки) климата. Продолжительность отопительного сезона для зоны А составляет 4910 часов, для W – 3590 часов, для С – 6446 часов.

Для определения SCOP тепловой насос испытывается в нескольких температурных точках. В таблице 2 представлены такие точки (температура снаружи/внутри помещения) для насоса «воздух – воздух». Аналогичные таблицы существуют для устройств «воздух – вода» и «вода (рассол) – вода».

Таблица 2. Температурные точки для теплового насоса «воздух – воздух» 

Температурные точки для теплового насоса «воздух – воздух»

За 100%-ную нагрузку теплового насоса принимается проектная (расчетная) тепловая нагрузка, соответствующая номинальной температуре, определенной для зоны каждого климата: -10°C для умеренного, 2°C для жаркого и -22°C для холодного.

В таблице 3 приведены значения частичной нагрузки (в % от расчетного значения) для различных температурных точек и климатических зон.

Таблица 3. Частичная нагрузка для различных температурных точек 

Частичная нагрузка для различных температурных точек

В США для чиллеров используют схожий с ESEER показатель IPLV (интегральный показатель эффективности при неполной нагрузке), разработанный Институтом кондиционирования воздуха, систем отопления и холодоснабжения (AHRI). Аналогично ESEER, IPLV представляет собой сумму холодильных коэффициентов (COP) при нагрузке 25%, 50%, 75% и 100%, обозначающихся A, B, C, D, и рассчитывается по следующей формуле:

IPLV = 0,01A + 0,42B + 0,45C + 0,12D

Для условий эксплуатации, отличных от стандартных, используют показатель эффективности при неполной нагрузке в нестандартных условиях NPLV, вычисляемый по той же формуле.

TEWI (ОКЭП)

Аббревиатурой TEWI (или ОКЭП) обозначают общий коэффициент эквивалентного потепления, отражающий полное воздействие холодильной установки на климат в результате как прямых выбросов используемого хладагента, так и косвенных выбросов, связанных с производством потребляемой энергии.

В стандарте EN 378-1 (ГОСТ 34891.1-2022), охватывающем вопросы проектирования и использования холодильных установок, а также проблемы безопасности и герметичности систем, приведена следующая формула для расчета TEWI:

TEWI = (ПГП m L n) + ПГП m (1 – αрекуперации) + (Eгодовое β * n), где

ПГП — потенциал глобального потепления хладагента

L — утечка хладагента в год (кг)

n — срок службы установки (лет)

m — количество холодильного агента в системе (кг)

αрекуперации — коэффициент рекуперации хладагента, может принимать значения от 0 до 1

Eгодовое — энергопотребление за год (кВт⋅ч в год)

β — выбросы CO2 при производстве электроэнергии, кг/кВт⋅ч.

Если парниковые газы могут выделяться из теплоизоляции или других компонентов холодильной системы, к формуле следует добавить еще одно слагаемое:

ПГПi mi (1 – αi), где

ПГПi — потенциал глобального потепления газа, содержащегося в теплоизоляции;

mi — количество газа, содержащегося в теплоизоляции, кг;

αi — коэффициент извлечения газа из теплоизоляции после окончания срока службы, от 0 до 1.

Из формулы видно, что при использовании природных веществ с нулевым или сверхнизким ПГП в качестве хладагентов и вспенивателей в составе изоляционных материалов парниковое воздействие холодильной установки будет определяться почти исключительно ее энергопотреблением.

Что влияет на энергоэффективность холодильного оборудования

Среди основных факторов, определяющих энергоэффективность холодильной установки, можно выделить следующие:

  • Температура испарения — понижение температуры испарения на 1°C ухудшает холодильный коэффициент (COP) на 1,5%—3% в зависимости от хладагента и конструкции установки.

  • Температура конденсации — понижение температуры конденсации на 1°C улучшает холодильный коэффициент (COP) на 2%—3% в зависимости от хладагента.

  • Перепад давления в трубопроводе и теплообменниках — потери, возникающие в результате перепада давления, компенсируются с помощью компрессоров, насосов и вентиляторов, которым из-за этого требуется больше энергии (мощности). При проектировании установки следует тщательно учитывать перепад давления в трубопроводах, вентилях, теплообменниках. Слишком маленький диаметр труб или слишком большие перепады давления теплообменника сразу сделают установку неэффективной.

  • Регулирование расхода жидкостей и газов — при уменьшении расхода потребление энергии любого поточного оборудования (например, вентиляторов, насосов, центробежных компрессоров) падает в кубической зависимости.

  • Система управления — адаптация к действительной тепловой нагрузке за счет управления скоростью компрессора, насосов и вентиляторов (например, с помощью инверторных преобразователей) существенно уменьшает энергопотребление.

  • Эксплуатация и техническое обслуживание — регулярная очистка теплообменников от загрязнений и инея позволяет предотвратить снижение COP на 5%—15%. Неисправность вентиляторов конденсатора ведет к повышению температуры конденсации и ухудшению COP. Регулярное обслуживание и замена фильтров препятствуют росту перепада давления и, как следствие, увеличению энергопотребления. Регулярное обслуживание компрессора обеспечивает бесперебойность его работы.

При поддержке
логотип Спектропласт
логотип Фриготехника
логотип Технофрост
логотип Международная академия холода
логотип Техноватт
логотип Техностиль
логотип ЭлДжиТи Рус
логотип Фригопоинт
логотип Ридан
логотип Россоюзхолодпром
логотип Север-М
логотип КриоФрост