EC-двигатели: что, где, почему и зачем

Академия КриоФрост
EC-двигатель

В настоящее время при проектировании систем отопления, вентиляции и кондиционирования все больше внимания уделяется вопросам энергосбережения. Все чаще специалисты ориентируются на приобретение энергосберегающего оборудования. По сравнению с традиционным оно более дорогое, но полностью окупает себя в процессе эксплуатации. ЕС-двигатели, которым посвящена данная статья, позволяют уменьшить энергопотребление, при этом увеличить производительность оборудования и срок его бесперебойной работы.


В соответствии с Федеральным законом № 261 ФЗ от 03.11.2009 г. «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» рациональное использование энергетических ресурсов отнесено к проблемам государственной важности.

Известно, что системы ОВК потребляют до 70 % энергоресурсов в промышленных, больших коммерческих или общественных зданиях [1, 2]. В связи с этим использование наиболее эффективных энергосберегающих средств и методов в данной области становится чрезвычайно актуальной задачей. Одним из новых направлений в данном вопросе является применение так называемых EC-двигателей, о которых специалистам ОВК известно сравнительно мало. Тем не менее, ряд зарубежных, а в последнее время и отечественных поставщиков климатической техники рассматривают EC-двигатели как опции, доступные к практическому применению.

Цель настоящей статьи – показать действительную целесообразность данного новшества (в противовес расхожему мнению, что это просто дорого, а следовательно, и не столь интересно с коммерческой точки зрения), определить в общих чертах основные области и условия востребованности в плане обеспечения экономической и технической эффективности достигаемых результатов.

Что?

ЕС-двигатель – это бесколлекторный синхронный двигатель со встроенным электронным управлением, или, более кратко, электронно-коммутируемый (Electronically Commutated) двигатель. Его иногда также называют BLDC-двигателем (Brushless DC motor), то есть бесщеточным двигателем постоянного тока. Вентиляторы, построенные на базе данного двигателя, называются ЕС-вентиляторами.

ЕС-двигатель имеет внешний ротор, в котором располагаются сегменты с постоянными магнитами. Управление вращением ротора ЕС-двигателя осуществляется за счет контролируемой подачи электроэнергии на обмотку статора в зависимости от положения ротора, которое отслеживается при помощи датчиков Холла, а также заданных параметров регулирования, поступающих, например, от внешних датчиков соответствующего типа в виде токовых (4–20 мА) или потенциальных (0–10 В) сигналов. При этом встроенный PID-регулятор позволяет, наряду с пропорциональным управлением, устанавливать скорость реагирования двигателя на изменение управляющего сигнала в зависимости от его дифференциальных и интегральных показателей. ЕС-двигатель в разрезе представлен на рис. 1.

Преимущества EC-вентилятора

Рисунок 1. Устройство энергосберегающего ЕС-двигателя

Принцип работы ЕС-двигателя основан на том, что в поле, создаваемом встроенными в ротор постоянными магнитами, осуществляется управление вектором магнитного поля путем изменения направления тока в обмотке статора. В каждый момент времени контроллер вычисляет и подает на обмотку статора полярность тока, которая необходима для того, чтобы обеспечить непрерывное вращение ротора с заданной скоростью.

EC-двигатели возможно подключать к постоянному источнику напряжения согласно параметрам или через встроенный коммутационный модуль непосредственно к сети переменного тока (220 В, 380 В). С использованием стандартного приборного интерфейса RS 485 или специальной шины ebm BUS обеспечена возможность управления вентилятором (либо группой вентиляторов до 31 шт. в каждой) при помощи ПК или КПК. Количество групп вентиляторов в интегрированной системе управления может достигать 256. Возможно также использование технологии Bluetooth. Предусмотрена выдача тревожных и аварийных сигналов, а также обеспечение мониторинга работы системы. Система подключения ЕС-двигателя представлена на рис. 2.

Устройство энергосберегающего ЕС-двигателя

Рисунок 2. Система подключения ЕС-двигателя

Где?

Области применения ЕС-двигателей в системах ОВК еще только намечаются в последние годы. Тем не менее, в отдельных приложениях ЕС-двигатели уже завоевали твердые позиции, зарекомендовав себя в положительном отношении по ряду ключевых показателей. Ниже кратко описаны некоторые из успешно освоенных областей применения ЕС-двигателей.

Тепловые насосы систем «воздух – вода» и «воздух – воздух», оснащенные ЕС-двигателями, в качестве основного преимущества характеризуются синхронной работой вентиляторов, что не может быть обеспечено в полной мере при использовании асинхронных двигателей переменного тока (AC-двигателей). Кроме того, отсутствие проскальзывания магнитного поля в ЕС-двигателях, что имеет место в AC-двигателях независимо от способа управления ими, исключает потери энергии, свойственные данному неблагоприятному явлению. В целом энергопотребление и, соответственно, срок окупаемости тепловых насосов сокращаются вдвое [3].

Овощехранилища и грибные камеры, оснащенные ЕС-двигателями в составе программно-технического комплекса «Тургор АМ», характеризуются оптимальным регулированием числа оборотов и, соответственно, производительности вентиляторов до необходимого в данный момент значения. По данным опытной эксплуатации это осуществляется более эффективным образом по сравнению с ранее использовавшимися AC-двигателями, оснащенными частотным приводом и ПИД-регуляторами.

В овощехранилищах это способствует поддержанию сохранности и качества загружаемых овощей и корнеплодов на протяжении всего межсезонного периода. В грибных камерах достигается двукратное увеличение объема производства шампиньонов на тех же площадях. Срок окупаемости в обоих случаях не превышает одного года [4].

Циркуляторы воздуха (дестратификаторы), имеющие в своем составе ЕС-двигатели, возможно объединять в сеть с централизованным управлением. По данным фирмы Avedon Engineering, производимые ею дестратификаторы серии Airus, работающие децентрализованно в составе единой сети управления, позволяют экономить до 35 % энергетических затрат по сравнению с обычными вентиляторными установками, используемыми для снижения температурного градиента по высоте помещения при наличии существенных теплоизбытков [5].

Фэнкойлы производства фирмы Trox, оснащенные ЕС-двигателями, характеризуются значением удельной потребляемой мощности (Specific Fan Power, SFP), постоянным во всем диапазоне производительности, равным 0,3, в сравнении со значением 0,8, типичным для оснащенных AC-двигателями фэнкойлов. Совместно с регулированием производительности в зависимости от реальной потребности это позволяет снизить среднегодовое потребление энергии с 620 до 140 кВт·ч [6].

Охлаждаемые прилавки, оснащение которых ЕС-двигателями впервые было инициировано фирмой Heatcraft Refrigeration Products (HRP), оказались настолько эффективными, что, например, в США энергетическая комиссия штата Калифорния (California Energy Commission, CEC) включила использование EC-двигателей в состав обязательных требований ко всем вновь разрабатываемым образцам холодильного оборудования [7].

Модулирующие газовые горелки, имеющие в своем составе вентиляторы с EC-двигателями для нагнетания воздуха, необходимого для горения, позволяют получить стабильное и сбалансированное пламя, что существенно улучшает условия эксплуатации котельной в целом и продлевает ресурс оборудования.

Прецизионные кондиционеры (Close Control в классификации EUROVENT) производства фирмы Tecnair стали оснащаться ЕС-двигателями сравнительно недавно. Это решение связано, прежде всего, с необходимостью отвечать возросшим современным требованиям к энергоэффективности устанавливаемого оборудования. Вместе с тем и другие преимущества EC-технологии имеют высокую актуальность в данных областях применения, например, высокая точность регулирования, снижение шумности, увеличение надежности и срока службы.

Следует отметить, что при работе EC-двигатель практически не выделяет тепла, в то время как АС-мотор имеет рабочую температуру +35…+75 °C, что накладывает дополнительную тепловую нагрузку на контур охлаждения. При этом EC-двигатели без дополнительного перегрева обеспечивают свою работоспособность в широком диапазоне температуры внешней среды. По данным EBM PAPST, температура разогрева работающего EC-двигателя на основании проведенного тестирования не превышает +45 °C. Максимально и минимально допустимые температуры эксплуатации EC-двигателя составляют соответственно +75 и –20 °C.

Особо важным для прецизионных кондиционеров медицинского назначения является то обстоятельство, что в соответствии с ГОСТ 52539-2006 [8] в лечебных учреждениях помещения, относящиеся к группам 1 (высокоасептические операционные) и 2 (палаты интенсивной терапии), должны непрерывно обеспечиваться гарантированным подпором воздуха не менее 10–15 Па, но не более 20 Па. Указанные значения должны поддерживаться независимо от изменяющихся условий (открытие дверей, работа оборудования и т. д.). Помещения, относящиеся к группе 5 (для инфицированных больных), наоборот, должны непрерывно обеспечиваться гарантированным разрежением. В первом случае это достигается превалированием притока над вытяжкой, а во втором – превалированием вытяжки над притоком, что обеспечивается регулированием расходов воздуха по показаниям внешних прессостатов, контролирующих перепад давления между помещениями. Наиболее точное, безынерционное и эффективное регулирование расходов воздуха достигается использованием EC двигателей в качестве приводов вентиляторов, вследствие чего они рядом европейских стандартов (VDI3803, VDI2167 part 1, SWKI-Guideline 99-3) определены как комплектующий элемент кондиционеров медицинского назначения.

Аналогичное положение дел в соответствии с ГОСТ 14644-4-2002 [9] является характерным для всех объектов прецизионного кондиционирования, имеющих в своем составе «чистые» помещения и связанные с ними контролируемые среды. Работа контроллеров в этих случаях осуществляется по показаниям не двух, как обычно, датчиков (термостат и гигросат), а трех датчиков, в число которых включается также прессостат. Последний работает в цепи управления EC-двигателями.

Сухие градирни и выносные воздушные конденсаторы компании Refrion оснащаются ЕС-вентиляторами нового поколения диаметром 800, 900 и 1 000 мм.

Технические показатели ЕС-вентиляторов:

  • Улучшенные технические характеристики. Новые EC-вентиляторы оснащены двигателями меньшего размера, но с улучшенными техническими характеристиками, что позволило на 5 % увеличить их мощность по сравнению со старой линейкой ЕС-вентиляторов.

  • Низкие шумовые характеристики. Вентиляторы не создают дополнительной шумовой нагрузки при регулировании скорости вращения. Уровень звукового давления уменьшается на 6 дБ по сравнению со старыми моделями.

  • Безопасность. Новые ЕС-вентиляторы выгодно отличаются дополнительной защитой от перегрева электроники и двигателей вентиляторов, а также защитой от блокировки ротора, потери фазы и резких скачков напряжения, обеспечивая бесперебойную работу как в неблагоприятных условиях окружающей среды, так и при сбоях электропитания.

  • Высокий моторесурс. Новые EC-вентиляторы в силу разгруженности подшипниковых узлов по осевым и радиальным усилиям, а также благодаря встроенной защите по электропитанию обладают высоким моторесурсом, составляющим более 80 000 часов.

  • Возможность удаленного контроля. Новые EC-вентиляторы можно коммутировать с Modbus, таким образом, упростив дистанционный контроль над эксплуатационными параметрами вентиляторов (благодаря шкафу управления Intelliboard с интегрированным PLC).

Почему?

Компактность, низкое энергопотребление, плавное и точное регулирование, низкий уровень шума, отсутствие вибрации, согласованность с рабочим колесом по аэродинамике и мощности, а также ряд других излагаемых ниже особенностей ЕС-двигателей являются причиной все более возрастающего интереса к ним.

Преимущество в габаритах обусловлено тем, что ЕС-двигатели, являясь более компактными по сравнению с AC-двигателями, полностью вписываются в габариты крыльчатки вентилятора, обеспечивая прямой привод, в то время как вентиляторы с AC-двигателями занимают значительно больше места, особенно в направлении потока воздуха, что означает необходимость наличия несколько увеличенных размеров венткамеры. Размер выходного отверстия EC-вентилятора практически совпадает с поперечными размерами секции, в которой он размещается. Это приводит, с одной стороны, за счет предварительно выровненного потока воздуха к более эффективному использованию поверхности теплообменника, устанавливаемого за вентилятором, и улучшению съема с него тепла/холода, а с другой стороны, снижает скорость прохождения воздуха внутри секции вентилятора, уменьшает потери давления и шумность. Преимущества в сравнении с AC-двигателем, имеющим ременной привод, схематично показаны на рис. 3.

Сравнение КПД двигателей различного типа

Рисунок 3. Преимущества EC-вентилятора

У ЕС-вентиляторов практически отсутствуют пиковые пусковые токовые нагрузки за счет того, что встроенный регулятор обеспечивает достаточно плавное нарастание амплитуды переменного тока от нуля до номинального значения. В то же время пусковой ток у АС-вентиляторов обычно в 5–7 раза превышает номинальный, что приводит к необходимости увеличения сечения электропроводки и параметров пускового оборудования, которые выбираются в расчете на значения пускового тока.

Поскольку ротор ЕС-двигателя является внешним с постоянными магнитами, в нем отсутствуют тепловые потери, неизбежные в случае короткозамкнутого ротора асинхронного двигателя. Отсюда высокий КПД, достигающий 80–90 %. На рис. 4 приводится сравнение КПД двигателей различного типа, среди которых ЕС-двигатель характеризуется рекордными значениями в широком диапазоне полезной мощности на выходе.

Соотношение расхода и потребляемой мощности вентиляторов различного типа

Рисунок 4. Сравнение КПД двигателей различного типа

Наряду с высоким КПД, высокая степень энергосбережения при использовании EC-двигателей в системах ОВК достигается за счет регулирования числа оборотов. Известны следующие соотношения между числом оборотов (n1, n2), расходом (L1, L2), потерей напора (∆p1, ∆p2) и потребляемой мощностью (N1, N2):

L1/L2 = n1/n2;

∆p1/∆p2 = (L1/L2)2 = (n1/n2)2;

N1/N2 = (∆p1 L1)/(∆p2 L2) = (n1/n2)3.

В силу кубической зависимости потребляемой мощности от числа оборотов их плавное и глубокое регулирование, обеспечиваемое EC-двигателями без преобразования частоты питающего напряжения, дает соответствующий значительный эффект в части снижения суммарных значений потребляемой мощности, иллюстрируемое на рис. 5 путем сравнения EC-двигателей с AC двигателями, использующими фазовое, амплитудное и частотное регулирование.

Сравнительная оценка потребляемой мощности EC- и AC-двигателями, используемыми в составе CRAC

Рисунок 5. Соотношение расхода и потребляемой мощности вентиляторов различного типа

С эксплуатационной точки зрения преимущества ЕС-двигателей обусловлены тем, что вращающиеся части исполнены как один динамически и статически сбалансированный компонент, общий вес которого равномерно распределен на оба опорных подшипника, что значительно влияет на срок службы изделия. Сопутствующим этому обстоятельством является также минимальная вибрация и шум при работе ЕС-двигателя.

Итак, сведем воедино основные аргументы в пользу ЕС:

  • высокий КПД;

  • высокая точность регулирования в соответствии с имеющимися условиями;

  • адаптивность в соответствии с изменением внутренних климатических параметров;

  • малые пусковые токи;

  • режим работы с низким уровнем шума и минимальной вибрацией, длительный срок службы, не нуждается в обслуживании.

Зачем?

На рис. 6 представлены по данным фирмы Tecnair значения потребляемой мощности EC-двигателями, опционально поставляемыми в составе прецизионных кондиционеров (Computer Room Air Conditioners, CRAC) холодопроизводительностью 35, 42, 60, 70 и 75 кВт в сравнении со стандартно используемыми асинхронными двигателями переменного тока (AC-двигателями).

Сравнительный анализ потребляемой мощности EC- и AC-двигателями, используемыми в составе CCU (Close Control Unit)

Рисунок 6. Сравнительная оценка потребляемой мощности EC- и AC-двигателями, используемыми в составе CRAC

Аналогичное сравнение представлено на рис. 7 в отношении поставляемых фирмой Tecnair прецизионных кондиционеров CCU (Close Control Units), комплектуемых AC-двигателями с частотным регулированием.

Энергосбережение при применении EC-систем в различных областях

Рисунок 7. Сравнительный анализ потребляемой мощности EC- и AC-двигателями, используемыми в составе CCU (Close Control Unit)

Сводные усредненные данные по энергосбережению, обеспечиваемому использованием EC-двигателей в различных приложениях, представлены в таблице.

Очевидно, что при дополнительной стоимости EC- двигателя 100–200 долларов, капитальные затраты окупаются очень быстро.

Таблица 1.

Выводы

Резюмируя все достоинства систем, приобретаемые при использовании EC-технологии, можно выделить главное: EC-вентиляторы с электронным управлением плавно реагируют на изменение требований по выходной мощности, работают в особо экономном режиме частичной нагрузки и нечувствительны к колебаниям напряжения. EC-вентиляторы обеспечивают снижение до 30 % расхода электрической энергии в сравнении с обычными трехфазными AC-вентиляторами.

Литература

Вишневский Е. П. Энергосбережение при проектировании систем микроклимата зданий // Сантехника, Отопление, Кондиционирование (С. О.К.). – 2010. – № 1.

Вишневский Е. П., Чепурин Г. В. Новые европейские стандарты в области ОВК // Сантехника, Отопление, Кондиционирование (С. О.К.). – 2010. – № 2.

ЕС-вентиляторы в тепловых насосах // Сантехника, Отопление, Кондиционирование (С. О.К.). – 2008. – № 6.

ЕС-вентиляторы для овощехранилищ и грибных камер // Сантехника, Отопление, Кондиционирование (С. О.К.). – 2010. – № 1.

Великолепный климат и низкие энергозатраты с ЕС-вентиляторами в циркуляторах воздуха Airius // Сантехника, Отопление, Кондиционирование (С. О.К.). – 2008. – № 2.

The synergy of EC motors and FCUs // Modern Building Services. 2006, August.

EC motors for unit coolers // Product Bulletin. 2007, October.

ГОСТ-Р 52539-2006. Чистота воздуха в лечебных учреждениях. Общие требования.

ГОСТ Р ИСО 14644-4-2002. Чистые помещения и связанные с ними контролируемые среды.

Авторы

Е. П. Вишневский, канд. техн. наук, технический директор, United Elements Group, EVishnevsky@uelements.com

Г. В. Малков, продукт-менеджер United Elements Group

Комментарии 0

При поддержке
Ассоциация предприятий индустрии микроклимата и холода
Всероссийский научно-исследовательский институт
холодильной промышленности
Ассоциация холодильной промышленности и кондиционирования воздуха Республики Казахстан
Международная академия холода
Международный центр научной и технической информации
Россоюзхолодпром