К таким системам можно отнести системы погружного типа охлаждения (immersion cooling), который позволяет поддерживать необходимые температурные условия за счет отвода излишнего тепла от тепловыделяющей поверхности посредством кипения жидкости. В данном случае кипение за счет постоянного процесса парообразования обеспечивает гораздо более высокую интенсивность теплообмена и стабильность температурного режима по сравнению с традиционным воздушным охлаждением. Однако не редки случаи, когда то или иное устройство нужно охладить еще больше: например, для уменьшения скорости коррозии теплообменного оборудования в различных типах испарителей, повышения эффективности и экологичности когенерационных электростанций, снижения энергопотребления в испарителях опреснительных установок. Тогда необходимо понижать давление, тем самым снижая температуру кипения жидкости.
По этой причине сегодня активно разрабатываются и обсуждаются различные способы повышения эффективности теплообмена при кипении в вакууме. Большинство из них основано на модификации поверхности тепловыделения. Среди них существует два главных направления: изменение морфологии рабочей поверхности путем микро- и наноструктурирования и управление ее свойствами смачивания. Исследование новосибирских ученых принадлежит второму направлению: ими разработана и создана так называемая бифильная поверхность, соединяющая в себе преимущества гидрофобных и гидрофильных свойств поверхности применительно к задаче повышения эффективности кипения. Эксперименты проведены с использованием современных высокоскоростных методик: термографической съемки и видеосъемки.Однако одним из основных факторов, препятствующих внедрению технологий, основанных на кипении теплоносителя в вакууме, является заметное снижение интенсивности теплообмена и критических тепловых нагрузок с понижением давления. Например, при понижении давления от атмосферного до давления, при котором вода начинает кипеть при температуре близкой к комнатной, интенсивность теплообмена при кипении может снижаться в несколько раз. Более того, процесс кипения в вакууме сопровождается существенными колебаниям температуры теплообменной поверхности. Для ряда задач, например, охлаждения устройств микроэлектроники погружным способом, это является крайне нежелательным фактором, негативно влияющим на надежность работы оборудования.
— рассказал кандидат физико-математических наук, старший научный сотрудник ИТ СО РАН и Лаборатории физико-технических основ энергетики Физического факультета НГУ Антон Суртаев.
В результате авторы показали, что изготовленная поверхность обеспечивает значительную интенсификацию теплообмена при кипении в вакууме (до 3,7 раз по сравнению с обычной поверхностью) и позволяет значительно стабилизировать температурный режим охлаждения.
Подготовка высококвалифицированных кадров для науки и высокотехнологичного бизнеса остается одной из основных задач НГУ, поэтому участие студентов в подобных проектах с младших курсов – это закономерный процесс интеграции в профессиональную среду.Иными словами, применение бифильной поверхности позволило нам «разбить один большой пузырь на несколько пузырьков поменьше» и тем самым обеспечить однородность температурного поля поверхности при кипении в вакууме.
— прокомментировал студент 3 курса Инженерной школы ММФ НГУ Георгий Патрин.
Источник: nsu.ruМы рады, что студенты бакалавриата работают над фронтирными задачами вместе с действующими учеными. Безусловно, реализация этого проекта была бы невозможна без участия Лаборатории прикладных цифровых технологий НГУ, курирующей учебно-технологические проекты в рамках программы Инженерной школы.
— комментирует заместитель декана по развитию ММФ НГУ Анастасия Карпенко.
Комментарии 0
Войдите или зарегистрируйтесь, чтобы оставить комментарий