Приборы для измерения температуры: история изобретений

Спиральный термометр

Идея создания прибора для измерения температуры впервые возникла у голландского естествоиспытателя Ван-Гельмонта (1577—1644), а первый «термометр» был сконструирован итальянским физиком Галилеем в 1597 г. Он состоял из стеклянной трубочки с шаровидным расширением на одном конце. В открытое горлышко трубки была введена капелька ртути. При изменении температуры воздуха внутри шарика ртутная «пробка» соответственно то поднималась, то опускалась.

Галилей, Галилео

Галилео Галилей

Однако фактическим изобретателем термометра считают голландца Ван-Дреббеля (1572—1632). Его заслуга в том, что он использовал для своего прибора способность газов значительно изменять свой объем при относительно малых колебаниях температуры. Он взял довольно большой сосуд, до половины наполненный водой, и стеклянную трубочку с шарообразным расширением на одном ее конце. Её закупоренный конец был опущен под воду и там открыт. В результате вода осталась только в части трубки. При нагревании шара, вследствие расширения находившегося в нем воздуха, наблюдалось понижение уровня воды в трубке, и наоборот.

В дальнейшем Ван-Дреббель упростил свой термометр, причем введение воды в коленчатую трубку производилось путем сильного нагревания шара и последующего его охлаждения.

Вскоре ввиду относительно высокой температуры замерзания вода была заменена смесью из трех частей воды и одной части азотной кислоты. Для окрашивания сюда добавляли немного медного купороса. Хотя такие термометры были весьма чувствительны, однако они, в сущности, являлись «баротермоскопами», т. с. приборами, показания которых зависели от изменений атмосферного давления.

Первый термометр

Первый термометр в современном смысле слова был сконструирован во Флорентийской академии (Италия). Он состоял из стеклянной трубочки, закрытой наверху и соединенной нижним концом со стеклянным полым шариком. Термометрической жидкостью служил подкрашенный винный спирт. Для наполнения резервуара шарик термометра сильно нагревали, в результате чего воздух разрежался настолько, что большая его часть выходила наружу. Затем открытый конец трубки погружали в окрашенный спирт, который поднимался в ней и заполнял не только ее, но и шарик. После этого термометр охлаждали так, чтобы осталась пустой приблизительно половина трубки, и запаивали открытый ее конец. Это было слишком сложно.

Термометр Галилея, Ван-Дреббеля, термометр флорентийских академиков

В дальнейшем прибор наполняли окрашенным спиртом настолько, чтобы спирт заполнил приблизительно четверть длины трубки, и нагревали до тех пор, пока жидкость не поднималась почти до верхушки трубки (при предельно выкачанном воздухе), и тотчас же трубку запаивали. Изготовленные таким путем термометры были почти так же чувствительны, как и современные.

Термометры флорентийских академиков

Термометры флорентийских академиков

Значительно позже обнаружили, что размеры шарика резервуара не должны быть слишком большими, а кроме того, — что теплота должна передаваться, по мере возможности, его центральной частью. В результате появились термометры, сплющенные настолько причудливо, что они напоминали, по выражению современника, «даму, играющую в трик-трак». Для компактности вместо прямолинейных трубок применяли изогнутые несколько раз причем каждый физик делал их по-своему: флорентийские академики помещали ноль своей шкалы против того места, где устанавливался столбик жидкости термометра, поставленного в подвале их обсерватории. Другие принимали за ноль температуру максимальных зимних морозов. В термометрах того времени отмечали также деление «жарко», определяя его прикладыванием к руке лихорадочного больного в моменты пароксизмов или подвергая действию прямых лучей солнца в один из наиболее знойных летних дней.

Температурные шкалы

В середине XVII в. известный физик Роберт Бойль (1627—1691) предложил принять за исходную точку температуру замерзания воды. Однако вскоре обнаружили, что для построения шкалы одной исходной точки недостаточно.

Роберт Бойль

Роберт Бойль

Делансэ в своем труде о теплоте писал:

«Надо зимой проследить процесс замерзания воды и сделать на шкале термометра соответствующую пометку. Положите немного сливочного масла на шарик того же термометра и сделайте на его шкале вторую пометку против верхушки столбика в момент плавления масла. Расстояние на шкале между полученными двумя пометками разделите пополам и получите место третьей пометки — средней температуры между холодом и жаром. Каждый из полученных двух интервалов а свою очередь разделите на десять равных частей, кроме того, нанесите по четыре таких же деления ниже точки замерзания воды и выше точки плавления масла. В результате получите пятнадцать делений для холода и столько же для тепла».

Для повышения чувствительности термометров старались максимально увеличить длину трубок, которая доходила до 1 м! Однако такие термометры были слишком громоздки, и их перевозка была затруднительна. Поэтому пытались уменьшить, габарит термометров, делая ряд изгибов трубки.

В 1694 г. Шарль Ренальдини в Павии (Италия) изготовил термометр, нулевое деление которого было установлено после помещения шарика в смесь воды со льдом; вторая пометка соответствовала температуре кипящей воды.

Исаак Ньютон (1643—1727) для установления верхней точки брал не спирт, а льняное масло, имеющее более высокую точку кипения. Его шкала состояла из шести делений, соответствовавших следующим температурам: 1° — тающего льда, 2° — человеческой крови, 3° — плавления воска, 4° — кипения воды, 6° — плавления сплава свинца, висмута и олова и 6° — плавления чисто свинца.

Исаак Ньютон

Исаак Ньютон

В середине XVII в. появилось несколько весьма интересных термометров. Один из них назывался «Картезианским водолазом» и состоял из продолговатого хрустального сосуда длиной 10—12 см и диаметром около 5 см. Этот сосуд герметически закрыт, и только в верхней его части имеется небольшое количество воздуха. Остальное пространство заполнено разбавленным спиртом, в котором плавают 10—12 маленьких шариков разного веса, имеющих форму слезы и изготовленных из тонкого дутого стекла и наполненных воздухом. При достаточном понижении температуры эти шарики всплывают на поверхность жидкости, а при повышении температуры окружающего пространства снова погружаются в жидкость на разную глубину. При очень высокой температуре все шарики опускаются на дно хрустального сосуда.

Делансэ по поводу такого термометра отметил: «Благодаря ему стало возможным обнаруживать усиление и ослабление лихорадки». Для этой цели были изготовлены специальные термометры аналогичного типа, имевшие форму маленькой черепахи, чтобы их было удобно вкладывать подмышку.

В процессе дальнейшего усовершенствования термометров особенно важным моментом была замена спирта ртутью, обладающей следующим основными преимуществами: она — хороший проводник тепла и быстро реагирует на перемены температуры окружающего пространства, не замерзает при обычных низких температурах и не кипит при сравнительно высоких, не смачивает стекла.

Голландский физик Даниэль Фаренгейт (1686—1736) впервые сконструировал (1714 г.) сравнимые термометры, использовав для них в качестве термометрической жидкости винный спирт. Ноль был поставлен против верхушки столба спирта при погружении резервуара в замораживающую смесь определенных количеств льда, воды и морской соли. Температура тающего льда по шкале Фаренгейта 32°. Кроме того, имеется еще третья постоянная точка, соответствующая нормальной температуре здорового человека, измеряемой во рту или подмышкой. В дальнейшем Фаренгейт внес в свой термометр два существенных улучшения: третьей точкой он установил температуру кипящей воды (212°) и заменил спирт ртутью. Шкала Фаренгейта и теперь применяется в Англии и США. Чтобы перевести градусы Фаренгейта в современные градусы Цельсия, надо из данного числа вычесть 32 и полученный остаток помножить на 5/9. И, наоборот, для перевода градусов Цельсия в градусы Фаренгейта число их следует помножить на 9/5 и к произведению прибавить 32. Французский физик Рене Антуан Реомюр изготовил в 1730 г. термометры с жидкостью, состоявшей из такой смеси воды со спиртом, что объем ее увеличивался в отношении 80/1000 при изменении температуры от ноля (тающий лед) до 80° (кипящая вода). Промежуток между этими отметками был разделен на 80 равных частей. Термометры Реомюра быстро распространились во Франции и Италии, однако качество их было хуже, чем ртутных.

Даниэль Фаренгейт

Даниэль Фаренгейт

Для этого периода характерно многообразие типов термометров и шкал: почти в каждой стране имелись свои. Так, например, Королевское физическое о-во в Лондоне применяло термометры со шкалой Реомюра, причем наряду с цифрами градусов была проставлены словесные обозначения, а именно: против 0 стояло «Очень жарко», 25° — «Жарко», 45° — «Умеренно» и 65° — «Мороз». Порядок обозначений был обратный— чем больше число градусов, тем ниже температура.

Последнее усовершенствование обозначений шкалы свел шведский ученый Андерс Цельсий (1701— 1744), предложивший деление всей шкалы на 100 градусов и указавший на необходимость только двух постоянных точек — таяния льда и кипения воды. Эта конструкция термометров принята повсеместно и до сих пор применяется в науке и технике, а также и в повседневной жизни.

Андерс Цельсий

Андерс Цельсий


В 1989 году сессия Международного комитета мер и весов приняла новую температурную шкалу МТШ-90, действующую в настоящее время. Эта шкала заменила Международную температурную шкалу 1968 года (редакция 1975 года) и Временную температурную шкалу 1976 года, действующую в диапазоне температур от 0,5 до 30 К.

В МТШ-90 основной физической величиной является термодинамическая температура, символ Т, единицей термодинамической температуры является кельвин, символ К. По определению кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Учитывая опыт применения предыдущих температурных шкал, сохранена для практического применения температура Цельсия, символ t; единицей температуры Цельсия является градус Цельсия, символ °C.


Термоэлектрические эффекты

В начале 19 века электричество было захватывающей областью научных исследований, и вскоре ученые обнаружили, что металлы различаются по своему сопротивлению и проводимости. В 1821 году Томас Иоганн Зеебек обнаружил, что напряжение создается, когда концы разнородных металлов соединяются и помещаются при разных температурах. Пельтье обнаружил, что этот эффект термопары обратим и может использоваться для охлаждения.

Томас Иоганн Зеебек, термоэлектрический эффект

Томас Иоганн Зеебек, термоэлектрический эффект

В том же году Хамфри Дейви продемонстрировал, как удельное электрическое сопротивление металла связано с температурой. Пять лет спустя Беккерель предложил использовать платино-платиновую термопару для измерения температуры, но только в 1829 году Леопольдо Нобили создал устройство.

Платина также используется в резистивном датчике температуры, изобретенном в 1932 году К. Х. Мейерсом. Он измеряет электрическое сопротивление отрезка платиновой проволоки и обычно считается наиболее точным датчиком температуры. RTD, использующие проволоку, по своей природе хрупки и не подходят для промышленного применения. В последние годы были разработаны пленочные РДТ, которые менее точны, но более надежны.

В 20 веке также были изобретены полупроводниковые устройства для измерения температуры. Они реагируют на изменения температуры с хорошей точностью, но до недавнего времени им не хватало линейности.

Тепловое излучение

Очень горячие и расплавленные металлы светятся, выделяя тепло и видимый свет. Они излучают тепло и при более низких температурах, но на более длинных волнах. Английский астроном Уильям Гершель был первым, кто примерно в 1800 году осознал, что этот «темный» или инфракрасный свет вызывает нагрев. Работая со своим соотечественником Меллони, Нобили нашел способ обнаружить эту излучаемую энергию, последовательно соединив термопары в термобатарею.

Уильям Гершель

Уильям Гершель

За ним последовал болометр в 1878 году. Изобретенный американцем Сэмюэлем Лэнгли, он использовал две платиновые полосы, одна из которых была зачернена, в конструкции моста Уитстона. Нагрев инфракрасным излучением вызвал заметное изменение сопротивления.

Болометры чувствительны к инфракрасному свету в широком диапазоне длин волн. Напротив, устройства типа фотонных детекторов, разработанные с 1940-х годов, как правило, реагируют только на инфракрасное излучение в ограниченном диапазоне волн. Детекторы сульфида свинца чувствительны к длинам волн до 3 микрон, а открытие тройного сплава HgCdTe в 1959 году открыло двери для детекторов, приспособленных для определенных длин волн.

Сегодня широко используются недорогие инфракрасные пирометры, а тепловизионные камеры находят все больше применений по мере снижения их цен.

Автор: Академия КриоФрост

Комментарии 0

При поддержке
Ассоциация предприятий индустрии микроклимата и холода
Международная академия холода
Международный центр научной и технической информации
Ассоциация холодильной промышленности и кондиционирования воздуха Республики Казахстан
Всероссийский научно-исследовательский институт
холодильной промышленности
Россоюзхолодпром